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Abstract

We consider robust estimation of gene intensities from cDNA microarray data with repli-
cates. Several statistical methods for estimating gene intensities from microarrays have been
proposed, but there has been little work on robust estimation of the intensities. This is
particularly relevant for experiments with replicates, because even one outlying replicate
can have a disastrous effect on the estimated intensity for the gene concerned. Because of
the many steps involved in the experimental process from hybridization to image analysis,
cDNA microarray data often contain outliers. For example, an outlying data value could
occur because of scratches or dust on the surface, imperfections in the glass, or imperfections
in the array production. We develop a Bayesian hierarchical model for robust estimation of
cDNA microarray intensities. Outliers are modeled explicitly using a t-distribution, and our
model also addresses classical issues such as design effects, normalization, transformation,
and nonconstant variance. Parameter estimation is carried out using Markov Chain Monte
Carlo.

The method is illustrated using two publicly available gene expression data sets. The
between-replicate variability of the intensity estimates is reduced by 64% in one case and by
83% in the other compared to raw log ratios. The method is also compared to the ANOVA
normalized log ratio, the removal of outliers based on Dixon’s test, and the lowess normalized
log ratio, and the between-replicate variation is reduced by more than 55% relative to the
best of these methods for both data sets.

We also address the issue of whether the image background should be removed when
estimating intensities. It has been argued that one should not do so because it increases
variability, while the arguments for doing so are that there is a physical basis for the im-
age background, and that not doing so will bias the estimated log-ratios of differentially
expressed genes downwards. We show that the arguments on both sides of this debate are
correct for our data, but that by using our model one can have the best of both worlds: one
can subtract the background without greatly increasing variability.

KEY WORDS: Bayesian hierarchical model; Gene expression; Heteroscedasticity; Markov
chain Monte Carlo; Outlier; t distribution.
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1 INTRODUCTION

cDNA microarrays consist of thousands of individual DNA sequences printed in a high

density array on a glass microscope slide using a robotic arrayer. A microarray works by

exploiting the ability of a given labelled cDNA molecule to bind specifically to, or hybridize

to, a complemetary sequence on the array. By using an array containing many DNA sam-

ples, scientists can measure—in a single experiment—the expression levels of hundreds or

thousands of genes within a cell by measuring the amount of labelled cDNA bound to each

site on the array. In a typical two-color microarray experiment, two mRNA samples, from

control and treatment situations, are compared for gene expression. Treatment is taken in

a broad sense to mean any condition different from the control. Both mRNA samples, or

targets, are reverse-transcribed into cDNA, labeled using different fluorescent dyes (red and

green dyes), then mixed and hybridized with the arrayed DNA sequences. The hybridized

arrays are then imaged to measure the red and green intensities for each spot on the glass

slide. Image analysis is an important aspect of microarray experiments, whose purpose is to

provide estimates of the foreground and background intensities for both the red and green

channels (Yang, Buckley, Dudoit, and Speed 2002). The estimates of the red and green

intensities are the starting point of any statistical analysis such as testing for differential

expression, discriminant analysis, and clustering (Yeung, Fraley, Murua, Raftery, and Ruzzo

2001; Gottardo, Pannucci, Kuske, and Brettin 2003).

In order to measure gene expression changes accurately, it is important to take into ac-

count the random and systematic variations that occur in every microarray experiment. One

way to measure the variation is to use replicated experiments in which each gene is replicated

several times. In recent years, there has been a considerable amount of work on the estima-

tion of gene intensities and the detection of differentially expressed genes (Chen, Dougherty,

and Bittner 1997; Newton, Kendziorski, Richmond, Blattner, and Tsui 2001; Dudoit, Yang,

Callow, and Speed 2002). However, not much work has been done on robust estimation of

the intensities. Because of the large number of steps involved in the experimental process

from hybridization to image analysis, cDNA microarray data often contain outliers. For

example, an outlying data value could occur because of scratches or dust on the surface, im-

perfections in the glass, imperfections in the array production, and so on. Outliers can also

occur when the estimated difference between the background and the foreground intensities

from the image analysis is small. There is a need for robust estimates of the intensities.

Some work has been done on quality measure and filtering. Such approaches consist of
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calculating quality measures (sometime referred to as quality indixes) for a spot. Spots with

low quality indices are usually removed. Among others, Tseng, Oh, Rohlin, Liao, and Wong

(2001) filter genes based on the coefficient of variation, Lönnstedt and Speed (2002) remove

spots with low intensities, and Ideker, Thorsson, Siegel, and Hood (2000) remove outliers

using Dixon’s test at the 10% level. However, in general, spots can fall anywhere in the range

from “good to “bad” and the cut-offs used to judge the quality are somewhat arbitrary. Given

that microarray experiments are expensive and that the number of replicates tends to be

small, it would seem more satisfactory to downweight unreliable points than to discard them.

In this paper we introduce a Bayesian hierarchical model to estimate the intensities in

a robust way. The robustness is achieved using a hierarchical-t formulation (Besag and

Higdon 1999), which is more robust than the usual Gaussian model. Our model also deals

with classical issues such as normalization, data transformation and nonconstant variance.

The paper is organized as follows. Section 2 introduces the data structure and the notation.

In Section 3 we present the Bayesian hierarchical model used to estimate the intensities

and the parameter estimation method. In Section 4, we apply our model to experimental

data and compare our results to those from popular alternative estimators. We also discuss

whether one should subtract the background intensities from the image analysis. Finally, in

Section 5 we discuss our results and possible extensions.

2 DATA

We used three data sets that are fairly typical of data in this area. All were produced by

the University of Washington Center for Expression Arrays. They have the advantage that

in each case we know whether or not all or some of the genes were differentially expressed.

The like and like data: This data set consists of 8 experiments using the same RNA

preparation on 8 different slides. The samples that were applied to the arrays were

RNA isolations from a HeLa cell line. The expression levels of about 7680 genes were

measured. The same RNA was used for both samples. Theoretically, no genes should

be differentially expressed.

The HIV1 data: This data set consists of four experiments using the same RNA prepa-

ration on 4 different slides. The expression levels of 4,608 cellular RNA transcripts were

assessed in CD4-T-cell lines at time t = 1 hour after infection with HIV virus type 1.

Included in this number was a set of 384 selected control genes spotted on each slide.
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These included HIV-1 genes used as positive controls and nonhuman genes used as neg-

ative controls. Further details are given by van’t Wout, Lehrma, Mikheeva, O’Keeffe,

Katze, Bumgarner, Geiss, and Mullins (2003).

The HIV2 data: These data were collected in the same way and in the same laboratory

as the HIV1 data, but using a different RNA preparation.

Each dataset is the result of a balanced dye-swap experiment. Two of the four repli-

cates were hybridized with the green dye (Cy3) for the control and the red dye (Cy5) for

the treatment; then the dyes were reversed on the other two replicates. The values in the

Cy3 and Cy5 channels were extracted from each image using customized software written

at the University of Washington (Spot-On Image, developed by R.E. Bumgarner and Erick

Hammersmark). The image analysis provided four numbers for each gene in each repli-

cate: a Green spot intensity, a Green background intensity, a Red spot intensity and a Red

background intensity.

After the image analysis, the data take the form

(yiscr, xiscr), i = 1, . . . , I; s = 1, 2; c = 1, 2; r = 1, . . . , R

where yiscr and xiscr are the foreground and background intensities of gene i in the sample

s with color c from the replicate r. Note that we use different indices for the color and the

sample to allow dye-swap experiments.

Data transformation is an important initial step in microarray data analysis. It is often

assumed that the log transformation of the raw data makes the effects additive. This assump-

tion is approximately correct for gene expression data (Li and Wong 2000; Kerr, Martin, and

Churchill 2000; Rocke and Durbin 2001; Dudoit, Yang, Callow, and Speed 2002). Figure

1(a) shows that on the log scale the dye effect is approximately additive. The dye effect is

the result of an imbalance between the red and green intensities. It is known that such a

dye bias can lead to a nonlinear effect (Dudoit, Yang, Callow, and Speed 2002). Figure 1(b)

shows the log ratio intensity plotted against half the sum of the log intensities from the two

channels; we will refer to the latter quantity as the “overall intensity.” Figure 1(b) is just a

45◦ counterclockwise rotation of Figure 1(a). The Locally Weighted Scatterplot Smoother,

or lowess (Cleveland 1979), indicates that such a nonlinear trend is present in the like and

like data. We can see that the effects from the two different groups where the dyes have been

swapped are almost identical but reversed. As a result, in a balanced dye-swap experiment,

we expect the dye effect to be absent or at least greatly reduced when computing genewise

3
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Figure 1: Effect of the Dye Swap on the Like and Like Data. (a) Log(sample 1) versus
log(sample 2). This shows that the dye effect is approximately additive on the log scale. (b)
Overall intensity versus log ratio. This shows that the non-linear effects will approximately
cancel one another out in a balanced dye-swap experiment. The overall intensity is half the
sum of the log intensities in the two channels, and all logarithms are to base 2.

averages. Throughout this paper, logarithms are to base 2, which is standard in the analysis

of microarray data.

The log transformation usually stabilizes the variance for high intensity spots but low

intensity spots can be highly variable. Figure 2 shows the sample standard deviations of all

the genes as a function of their normalized log intensities. We normalized the intensities by

subtracting (on the log scale) the design effects introduced in the next section, namely the

sample, dye and replicate effects, and the dye-sample interaction effect.

The like and like data presented here measure the relative expression of a group of genes

using the same mRNA in the two samples. As a result, we expect to observe the technical

variation but not the biological variation. Figure 3 shows the normalized log intensities of

ten different genes in two samples. Even though the data are normalized and there is no

biological variation, we observe some outliers in each sample. It is clear that these outliers

can have a big effect on the intensity estimates.

3 ROBUST INTENSITY ESTIMATION VIA BAYESIAN

HIERARCHICAL MODELING

In this section we introduce the Bayesian hierarchical model we use to estimate the intensities

in each sample. We use a Bayesian linear model (Lindley and Smith 1972) with t-distributed
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Figure 2: Sample Standard Deviation versus the Mean Intensity for Each Individual Gene
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Figure 3: Dot Plots of 10 Genes from the Like and Like Data. Even though the data were
normalized (i.e. the design effects were subtracted), some outliers are present in each sample.
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sampling errors to allow for outliers (Besag and Higdon 1999). We also explicitly model

the nonconstant variances by using an exchangeable prior for the gene precisions (Lewin,

Richardson, Marshall, Glazier, and Aitman 2003). Our model includes design effects that

deal with normalization issues (Kerr, Martin, and Churchill 2000). We model the intensities

on the log scale because the effects are close to additive on that scale, as shown in Section

2, and because log measurements have a simple interpretation.

3.1 The Model

We model y∗iscr = log2(yiscr − xiscr + κ) where κ is a positive additive constant. This shifted

logarithmic transformation was proposed by Tukey (1957) and studied in detail by Box and

Cox (1964); it is often used to analyze gene expression data (Kerr, Martin, and Churchill

2000; Cui, Kerr, and Churchill 2002). Rocke and Durbin (2003) showed that the shifted log-

arithm can be an approximate variance-stabilizing transformation for gene expression data.

The purpose of introducing the shift κ is to avoid taking the logarithm of negative numbers

and to reduce the variance at low intensities. The parameter κ is estimated beforehand and

is treated as fixed in the estimation of the full model, as described in Section 3.3.

Conditionally on the parameters (µ,α,β,η, δ,γ), it is assumed that the (y∗1scr, y
∗
2scr)

′ are

independent and can be written as

y∗iscr = gκ(yiscr − xiscr) = µ+ αs + βc + ηr + γis + δsc +
εiscr√
wicr

, (1)

(γis|λγs
) ∼ N(0, λγs

), (2)

(εi1cr, εi2cr)
′|Vi ∼ N2(0,Vi), (3)

(wicr|νr) ∼ Ga(νr/2, νr/2), (4)

where wicr and (εi1cr, εi2cr)
′ are independent. Since the w’s are independent of the ε’s, we

have εiscr√
wicr

∼ T(νr,0,Vi), i.e. the (bivariate) errors have a bivariate t distribution with νr

degrees of freedom and covariance matrix Vi. The advantage of writing the model this way

is that, conditioning on the wicr, the sampling errors are again normal, but with different

precisions. The interpretation is also easier, as, conditionally on the wicr, estimation becomes

a weighted least squares problem. The hierarchical structure of the model is summarized in

the directed acyclic graph in Figure 4.

In (1), µ is the baseline intensity. The sample effect αs is used to remove the bias between

the two samples. If only a few of the genes are differentially expressed, the sample effect will

measure only the sample bias and will not greatly affect the differentially expressed genes.
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Figure 4: Directed Acyclic Graph of the General Model in Equation (1).

The dye effect is represented by βc, and accounts for the well-known fact that the green dye

(Cy3) tends to be brighter than the red dye (Cy5). The interaction of the sample s with the

sample c is denoted by δsc, and is present because the different dyes tend to have different

biases in different samples. The array effect of replicate r, ηr, is intended to normalize the

overall intensity of each array across replicates. This parameter is needed because differences

in overall intensity are frequent in microarray data. There are several reasons why this is so;

for example, the amount of RNA solution used on each array might not be the same, leading

to brighter arrays after the scanning process. Finally, γis, the effect of gene i in the sample

s, is the quantity of interest. We model it as a random effect with a Gaussian distribution

as defined by (2).

For a given gene, the correlation matrix, Vi, allows the measurements from the two

samples to be correlated. Ideker, Thorsson, Siegel, and Hood (2000) use a similar covariance

structure in their linear model. The log transformation usually stabilizes the variance for

high intensity spots but low intensity spots can be highly variable. Figure 2 shows that the

variance is not constant across genes. A model that allows gene dependent variances seems

more appropriate. The precision matrix (i.e. the inverse of the covariance matrix) is given
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by

(V−1
i |ρ, λε1i

, λε2i
) =

1

(1− ρ2)

(

λε1i

−
√

λε1i
λε2i

ρ

−
√

λε1i
λε2i

ρ

λε2i

)

,

(λεsi
|aε, bε) ∼ Ga(a2

ε/bε, aε/bε),

where ρ is the correlation between samples, λεsi
is the precision of gene i in sample s, and

Ga(a2
ε/bε, aε/bε) denotes a Gamma distribution with mean aε and variance bε. We use an

exchangeable prior for the precisions, so that information is shared between the genes. This

allows shrinkage of very small and very large variances. The priors are specified in the next

subsection.

3.2 Priors

We use a vague but proper prior for the precision of the random effects λγs
, exponential with

mean 200, so that λγs
∼ Ga(1, 0.005). Apart from the γ’s all the other effects are assumed

to be random with large variance, namely N(0, 25). They are fixed effects but are estimated

in a Bayesian way, so that uncertainty about those parameters can be captured as part of

the sampling process (Lindley and Smith 1972).

For identifiability, we impose the constraints α1 = 0 and β1 = 0, δ11 = δ12 = δ21 = 0,

η1 = 0 and ηR = 0. We also need two constraints on the γis, such as
∑

i γis = 0 for s = 1, 2.

However, instead of including these constraints as part of the model definition, we let the

γ’s be “free” during the sampling process, and identify the parameters afterwards from the

sampled values; see Section 3.3.

We also use vague but proper priors for the error precisions, namely aε ∼ U[0,1000] and

bε ∼ U[0,1000]. The prior for the correlation between the two samples is given by ρ ∼ U[−1,1].

The prior for the degrees of freedom νr is uniform on the set {1, 2, . . . , 10, 20, . . . , 100}.
A similar approach is taken by Besag and Higdon (1999). They use a uniform hyperprior on

the set {1, 2, 4, 8, 16, 32, 64} for the degrees of freedom. From a practical point of the view,

the biggest difference between our approach and theirs is that we also include 3 in the set

of possible values of νr. Our results suggest this to be useful, as there can be a noticeable

difference between results for low degrees of freedom, especially 2, 3 and 4, but much smaller

differences for larger values of νr. By using a prior that allows degrees of freedom between

1 and 100, we allow a wide range of sampling errors from the heavy tailed Cauchy (ν = 1)

to nearly Gaussian (ν = 100).
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3.3 Parameter Estimation

Realizations were generated from the posterior distribution via Markov chain Monte Carlo

(MCMC) algorithms (Gelfand and Smith 1990; Brooks 1998). Univariate updating was used

for all parameters except λε1i
and λε2i

, which were updated simultaneously. We used Gibbs

updates when the full conditionals had a simple form; otherwise we used slice sampling with

the “stepping out” procedure (Neal 2003).

The model (1) does not allow the identification of all parameters because we do not

impose any constraint on γ. However, contrasts involving elements of γ are identified,

and one could force all the parameters to be identified by imposing constraints such as
∑

i γis = 0 for s = 1, 2. For simplicity we did not take such an approach. Instead we

fitted the unconstrained model and post-processed the MCMC output to identify all the

parameters. By post-processing, we mean that after running the MCMC algorithm, we

changed the simulated values of γis so that
∑

r γsr = 0 for s = 1, 2, and then recomputed

the corresponding other parameters at each iteration. A similar approach has been taken

to solving the label-switching problem in Bayesian inference for finite mixture models using

MCMC (Stephens 2000; Celeux, Hurn, and Robert 2000).

We started the Markov chain from the least squares estimates of the parameters. We

used the method of Raftery and Lewis (1992, 1996) , to determine the number of itera-

tions, based on a short pilot run of the sampler. Software to implement this is available

at http://lib.stat.cmu.edu/S/gibbsit, http://lib.stat.cmu.edu/general/gibbsit,

and as part of the CODA package for MCMC diagnostics. For each dataset presented here,

this suggested that a sample of no more than about 50,000 iterations with 1,000 burn-in

iterations was enough to estimate standard posterior quantities. Guided by this, and leaving

some margin, we used 100,000 iterations with 5,000 burn-in iterations, and stored every 10th

iteration after the burn-in period.

We estimated the shift κ in advance by fitting (1) with wicr ≡ 1 and λεis ≡ λεs via

MCMC, and treating κ as a parameter with vague uniform prior κ ∼ U[0,10000]. We then

estimated κ by its posterior mean.

At first sight it would seem natural to estimate κ instead by including it as a parameter

in the MCMC estimation of the full model (1), but we did not do so, for the following reason.

If we did so, the posterior distribution of the quantities of interest, the γis, would be averaged

over different values of κ. However, when κ changes, so does the scale on which γis is mea-

sured and hence its interpretation, and so this would amount to averaging quantities denoted

by the same symbol, but that actually have different interpretations. We therefore opted to
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estimate κ first and then estimate the other parameters conditionally on the resulting value

of κ. A similar issue arises in making inference about regression parameters when a Box-Cox

(1964) transformation has been used. Box and Cox (1982) pointed out that inflating the

standard errors of regression parameters to take account of uncertainty about the transfor-

mation used amounts to averaging over inferences on different scales, and so is scientifically

inappropriate. They recommended first estimating the transformation parameter, and then

making inference about the regression parameters conditionally on the resulting estimate.

In practice, in our data sets, the posterior distribution of κ was highly concentrated, and the

results would have been similar had we treated κ as a parameter of the full model (1) in the

MCMC estimation.

We estimate the effect of gene i in sample s by the posterior mean of γis, namely

γ̄is =
1

K

K
∑

k=1

γ
(k)
is ,

where K is the number of iterations used in the MCMC after burn-in. Interest often focuses

on the difference between the two samples, i.e. on the log ratio of the intensities, which can

be estimated by (γ̄i1− γ̄i2) for gene i. The simplest estimate of the ratio of the log intensities

is the raw log ratio, namely (zi1cr−zi2cr), where ziscr = log2(yiscr−xiscr) denotes the raw log

measurements. Another popular estimate is the ANOVA normalized log ratio, (γ̂i1 − γ̂i2),

where γ̂is is the least squares estimate of the effect of gene i in sample s from our general

model applied to the raw log measurements. The name “ANOVA normalization” was intro-

duced by Kerr, Martin, and Churchill (2000), and we will use the same terminology even

though our model is slightly different. Another much used estimate is the lowess normalized

log ratio computed by carrying out a nonlinear normalization of each individual array (Du-

doit, Yang, Callow, and Speed 2002). The log ratios of a given array are transformed in the

following way:

zi1cr − zi2cr ⇐ zi1cr − zi2cr − hr(zi1cr + zi2cr),

where hr(.) is the lowess fit to the plot of the log ratios (zi1cr − zi2cr) against the overall

intensity (zi1cr + zi2cr)/2 (Yang, Dudoit, Luu, Lin, Peng, Ngai, and Speed 2002). Then the

normalized log ratios are averaged across replicates. The different estimates are compared

in Section 4.2.

Another estimation approach, applicable if three or more replicates are available, is to

apply a statistical test to the normalized measurements so as to remove outliers. Ideker,
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Thorsson, Siegel, and Hood (2000) filter the normalized measurements to remove outliers

by Dixon’s test (Kanji 1993), with significance level α = 0.1. For each individual gene, the

measurements are filtered in each sample independently. In the next section, we compare

Dixon’s test to our hierarchical t-formulation on 3 different genes. In Section 4.2, we assess

the effect of Dixon’s test on the variability between estimates from replicated experiments.

4 RESULTS

4.1 Illustrative Results

In this section, we use specific genes from the three experimental datasets described in

Section 2 to illustrate our model. The algorithm presented in Section 3.3 was used to fit

the general model to the like and like data and the two HIV data sets. Table 1 summarizes

the estimated coefficients when the model is applied to the HIV1 data. The posterior modes

of the degrees of freedom of the t-distribution, νr, ranged from 5 to 10, indicating that

the sampling errors are heavier-tailed than the Gaussian distribution. There is substantial

between-sample correlation, estimated as 0.68, even after removing design effects and gene

effects. Our model also captures the nonconstant variance with posterior means 7.10 and

1.75 for aε and bε respectively. The posterior mean of 1.75 for the variance of the gene

precisions, bε, allows the gene precisions to be quite different and should capture the larger

variance at low intensity.

Tables 2–4 illustrate the effect of the t-distribution when outliers are present. The weights

correspond to the posterior mean of the wicr for each pair of observations. Conditioning on

the wicr’s, the posterior mean can be seen as a weighted mean with the wicr as weights.

Table 2 shows that Dixon’s test as applied by Ideker, Thorsson, Siegel, and Hood (2000),

i.e. on the raw measurements in each sample independently, fails to remove a clear outlier.

Because of the outlier, the difference between the estimates of the effect of the same gene

from the HIV1 data and the HIV2 data is quite large, a difference of -0.71. Our model clearly

downweights the outlier, and as a result the difference between the two estimates is much

smaller with our method, at 0.12. The median also performs well in this case.

In Table 3, there is a clear outlier in the HIV1 data that is removed by Dixon’s test and

is also downweighted by our model. However the HIV2 experiment also seems to contain an

outlier that is not removed by Dixon’s test. In this case our method gives estimates that

differ between experiments by 0.41, while the other three methods yield estimates that differ

by more than three times as much.
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Table 1: Summary of the Coefficients from our Baysian Model on the HIV1 Data.

Parameter Effect Bayesian estimate Posterior sd q0.025 q0.975

µ baseline intensity 7.98 0.006 7.97 7.99
α2 sample effect -0.28 0.003 -0.29 -0.28
β2 dye effect -0.14 0.009 -0.16 -0.12
δ22 dye×sample interaction 0.58 0.005 0.57 0.59
η2 array 2 effect -0.47 0.008 -0.48 -0.45
η3 array 3 effect -0.06 0.009 -0.08 -0.04
λγ1

gene precision sample 1 0.34 0.007 0.33 0.35
λγ2

gene precision sample 2 0.34 0.007 0.33 0.35
ρ correlation between samples 0.68 0.005 0.67 0.69
aε mean of error precisions 7.10 0.12 6.89 7.32
bε variance of error precisions 1.75 0.62 0.62 3.02
ν1 df for array 1 10 0.5 9 10
ν2 df for array 2 9 0.6 8 10
ν3 df for array 3 6 0.3 5 6
ν4 df for array 4 5 0.1 4 5

Note: The Bayesian estimate is the posterior mean, except for ν1, ν2, ν3 and ν4, for which
it is the posterior mode.
q0.025: 0.025 quantile. q0.975: 0.975 quantile

Table 2: Log Ratios of One Gene of the HIV Data Sets. Dixon’s test (Ideker, Thorsson,
Siegel, and Hood 2000) fails to remove a clear outlier.

Replicates posterior The Dixon
1 2 3 4 mean median mean mean

HIV 1 (log ratio) -3.21 -0.04 0.34 0.41 -0.63 0.15 0.14 -0.63
weights 0.06 0.92 1.06 1.07
HIV 2 (log ratio) -0.20 0.08 0.15 0.31 0.08 0.11 0.02 0.08
weights 1.01 1.14 1.15 1.03
difference -0.71 0.04 0.12 -0.71

Note: ?gene removed by Dixon’s test on the normalized measurement at the 10% level.
The Dixon mean corresponds to the sample mean after removing the outlier (if any).
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Table 3: Log Ratios of One Gene of the HIV Data Sets. Dixon’s test removes a clear outlier.

Replicates posterior The Dixon
1 2 3 4 mean median mean mean

HIV 1 (log ratio) -0.94 0.30 0.75 4.61? 1.08 0.53 -0.07 -0.11
weights 0.46 1.06 1.00 0.05
HIV 2 (log ratio) -4.04 -2.51 -0.16 0.08 -1.65 -1.33 -0.48 -1.65
weights 0.52 0.79 1.04 0.99
difference 2.73 1.86 0.41 1.54

Note: ?gene removed by Dixon’s test on the normalized measurement at the 10% level.
The Dixon mean corresponds to the sample mean after removing the outlier (if any).

In Table 4, Dixon’s test incorrectly removes non-outlying replicates. The effect on the

variability of the estimates is large. Our method smooths the outliers and once again reduces

the variability between estimates.

Table 4: Log Ratios of One Gene of the HIV Data Sets. Non-outlying replicates are incor-
rectly removed by Dixon’s test.

Replicates posterior The Dixon
1 2 3 4 mean median mean mean

HIV 1 (log ratio) 0.08 0.21 0.52? 0.87? 0.42 0.36 0.28 0.14
weights 1.20 1.16 1.14 0.93
HIV 2 (log ratio) -1.44 0.68 1.63 1.95 0.71 1.16 0.48 0.71
weights 0.57 0.99 0.99 0.89
difference -0.29 -0.80 -0.20 -0.57

Note: ?gene removed by Dixon’s test on the normalized measurement at the 10% level.
The Dixon mean corresponds to the sample mean after removing the outlier (if any).

4.2 Between-Replicate Variability of Estimates

In this section, we compare the different log ratio estimates introduced in Section 3.3. We

first compare our estimates with the ANOVA normalized log-ratios for the like and like

data, as shown in Figure 5. These are a natural first point of comparison, because they are

essentially the raw log ratios, normalized and corrected for design effects. In theory, the like

and like data should not show any differentially expressed genes. The gray lines in Figure 5
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Figure 5: Log Ratio Estimates as a Function of the Overall Intensity on the Like and Like
Data (first 4 replicates). The gray lines show a two-fold change. The number of false
positives for the normalized log ratios is 36, as against only 0 for the posterior means, a
100% reduction.

show a two-fold change. The ratio of two is sometimes used as a rule of thumb for selecting

differentially expressed genes (Yang, Ross, Kuang, Brown, and Weigel 1999). Because of the

high variability at low intensity, some of the genes show a greater than two-fold change in

expression. Using the two-fold change rule, the number of false positives for the ANOVA

normalized log ratios is 36, as against 0 for the posterior means, an 100% reduction.

We highlighted two groups of genes in the two HIV data sets. The first group consists of

HIV genes (positive controls) that are known to be differentially expressed, and the second

one consists of non-human genes (negative controls), which are known not to be differentially

expressed. Figure 6 shows that our model enhances the identification of the differentially

expressed genes. It shrinks the low intensity (highly variable) genes, but does not modify

the differentially expressed genes too much.

We now compare all the methods described in Section 3.3 by dividing the like and like

data and the HIV data into two groups of four replicates, computing an estimate of the

log ratio for each gene from each of the two groups, and computing the sum of squared

differences between the two estimates, summed over all genes. The eight replicates of the

HIV data were separated into two groups of four, consisting of the HIV1 and HIV2 replicates

respectively. Even though those two groups are biological rather than technical replicates,

we expect the log ratios from each group to be similar.
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Figure 6: Log Ratio Estimates as a Function of the Overall Intensity on the HIV1 Data. The
gray lines show a two-fold change. The number of false positives at low intensity is greatly
reduced. The log ratio estimates of the true differentially expressed genes stay about the
same.

The raw log ratios performed poorly, with high variability between estimates. The

ANOVA normalized log ratios performed better, as shown in Tables 5 and 6. Removing

outliers using Dixon’s test as in Ideker, Thorsson, Siegel, and Hood (2000) did not improve

things; it actually did worse than the normalized log ratios that take no account of outliers.

The between-replicate variability is greatly decreased when using our model. Our method

reduced the sum of squared differences between estimates by 64% for the like and like data

and by 83% for the HIV data, compared to the raw log ratios. Our method also performed

considerably better than the other methods considered, by this measure. For the like and

like data, it produced a sum of squared differences between estimates that was 55% less than

that for the best competing method (in that case the lowess normalized log ratio). For the

HIV data, it was 58% better than the best competing method (in that case the ANOVA

normalized log ratio).

We also compared our approach to the quality filtering of Tseng, Oh, Rohlin, Liao, and

Wong (2001). They filter so-called low quality genes, based on their coefficient of variation.

A gene whose coefficient of variation is too large is removed from the dataset. When we used

their software on our data, it removed about 1000 genes in each of the two groups of the HIV

data. The software can be downloaded at http://biosun1.harvard.edu/~tseng/download.html.

The numbers of genes removed in each group were different and therefore it was not possible
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Table 5: Sum of Squared Differences Between the Estimates when Dividing the Like and
Like Data in Two Groups of 4 Replicates. The posterior mean reduces the variability by
64% relative to the raw log ratios.

Estimates SSD SSD/(SSD raw log ratio)
Raw log ratio 473 1.00
ANOVA normalized log ratio 430 0.91
ANOVA normalized log ratio (w/ Dixon) 560 1.18
Lowess normalized log ratio 381 0.81
Posterior mean 170 0.36

Note: ANOVA normalized log ratios are computed by subtracting the least squares
estimates of the design effects. Lowess normalized log ratio are computed by doing a
Lowess normalization to each individual array. ANOVA normalized log ratio (w/ Dixon):
Dixon’s test at the 10% level was used to remove outliers.

Table 6: Sum of Squared Differences Between the Estimates when Dividing the HIV Data
in Two Groups of 4 Replicates. The posterior mean reduces the variability by 83% relative
to the raw log ratios.

Estimates SSD SSD/(SSD raw log ratio)
Raw log ratio 1941 1.00
ANOVA normalized log ratio 778 0.40
ANOVA normalized log ratio (w/ Dixon) 871 0.44
Lowess normalized log ratio 814 0.42
Posterior mean 326 0.17

Note: Least squares normalized log ratios are computed by subtracting the least squares
estimates of the design effects. ANOVA normalized log ratio are computed by doing a
Lowess normalization to each individual array. ANOVA normalized log ratio (Dixon):
Dixon’s test at the 10% level was used to remove outliers.
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Figure 7: Log Ratio Estimates as a Function of the Overall Intensity on the HIV1 Data.
The gray lines show a two-fold change. (a) Normalized log ratios after filtering genes as in
Tseng, Oh, Rohlin, Liao, and Wong (2001). (b) Log ratio estimates from our model. The
filtering did not remove the poor quality genes at low intensity.

to compare their method with ours directly in terms of variability between estimates. Figure

7 compares the estimated log ratios from our model to the least squares normalized log ratios

after filtering. It shows that the filtering did not necessarily remove the low intensity genes.

In their paper, Tseng et al. (2001) also recommend looking for replicate outliers when a spot

fails to pass the quality filtering. However they do not mention how to decide if a replicate

is an outlier. This is a crucial point especially when the number of replicates is small.

4.3 Should the Background be Subtracted?

The image from which individual gene expression levels are estimated takes the form of

roughly circular spots superimposed on a background. Expression levels are estimated by

measuring the average intensity in the spot. The measured intensity in the background

is often greater than zero for various physical reasons, including flourescence of the glass

substrate, amplifier offset, dark current, and so on. Thus the estimate of the intensity in

a spot is often modified by subtracting the estimated background intensity. In general,

background intensities vary spatially within a slide, and so it is common to estimate the

background for each spot separately (e.g. Yang et al. 2000). Brown, Goodwin, and Sorger

(2001) have argued that local background is a poor measure of nonspecific flourescence, and

17



that one should use a global background estimate, i.e. use the same background estimate

for all the genes on a slide.

However, some authors have pointed out that subtracting the background can have the

negative effect of increasing the variability, especially at low intensity (Rocke and Durbin

2001; Yang, Buckley, Dudoit, and Speed 2002; Cui, Kerr, and Churchill 2002; Glasbey and

Ghazal 2003). A counterargument to this is that by not subtracting the background one

increases all the intensity measurements, and so one tends to reduce the estimates of ratios

that are large, thus biasing the ratio estimates of differentially expressed genes downwards.

This debate about whether or not to subtract the background remains unresolved.

A comparison of standard (ANOVA normalized) log ratios with and without background

subtraction (Figures 6 and 8) shows that the arguments on both sides of the debate are

correct for our data. Figure 6(a) shows the estimates with background subtraction, and

the high variance at low intensities is clear; using the two-fold change rule of thumb, this

seems likely to lead to a considerable number of false positive assessments of differential

expression. Figure 8 shows the same plot, but without background subtraction. The variance

is indeed considerably reduced. But this comes at a high price in terms of bias. For the

13 genes known to be differentially expressed, the median log ratio is 8.1 with background

subtraction, and 4.4 without. Such a level of bias could lead us to miss genes that are

moderately differentially expressed, and indeed one of our differentially expressed genes falls

below the two-fold threshold when the background is not subtracted. On the other hand,

three of the 29 genes known not to be differentially expressed exceed the threshold when the

background is subtracted, but none do so when the background is not subtracted.

Inspection of the posterior means in Figure 8 suggests that our method allows one to

have the best of both worlds: one can subtract the background without paying such a high

price in terms of variance. After background subtraction, the variance at low intensities is

much less than with the standard nonrobust method, and the median log ratio for the 13

differentially expressed genes is 6.9, much closer to the nonrobust estimates with background

subtraction than without. With our method, all the 13 known differentially expressed genes

exceed the two-fold threshold, while none of the 29 genes known not to be differentially

expressed do.
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Figure 8: ANOVA Normalized Log Ratio Estimates Without Background Subraction for the
HIV Data. Not subtracting the background shrinks the estimates towards the x-axis. One
of the genes known to be differentially expressed shows a less than two-fold change.

5 DISCUSSION

We have developed a Bayesian hierarchical model for estimating cDNA microarray intensities

in a way that is robust to outlying measurements caused by things such as scratches, dust,

imperfections in the glass and imperfections in the array production. The robustness is

achieved by using a hierarchical t-distribution and allowing the data to choose the number of

degrees of freedom. Our model borrows strength from all the genes when deciding if a gene is

an outlier. This is essential: it is hard to detect outliers based only on the four measurements

for a single gene. Classical robust estimators, such as M-estimators, would be inefficient with

a small number of replicates. For example a trimmed mean with 4 replicates would remove

at least 2 observations and the estimate would then be based on 2 replicates. Our model

works well with four replicates, thanks to the borrowing of strength. Our model also deals

with the classical issues of design effects, normalization, transformation and nonconstant

variance.

We decided to model the log transformed microarray intensities. We have specified our

model on the scale of log transformed intensities. Durbin, Hardin, Hawkins, and Rocke

(2002) and Huber, von Heydebreck, Sultmann, Poustka, and Vingron (2002) independently

proposed a transformation that stabilizes the variance very well. However, this transforma-

tion is somewhat complex, and Rocke and Durbin (2003) have shown that the shifted log

19



transformation provides a good approximation while keeping the ease of interpretation of

log ratios.

We estimate the dye bias assuming that most of the genes are not differentially expressed.

This assumption is usually at least approximately correct, and without it one cannot dis-

tinguish a poor RNA preparation from differential expression. If one does not accept this

assumption, the term α, the dye effect, should be removed from the model. If we still want

to estimate the sample bias, a technique similar to that of Li and Wong (2000) where a group

of genes that are believed not to be differentially expressed is selected, could be used. Our

model assumes that the data are the results of a dye swap experiment. If no dye swap was

performed, the sample effect and the dye effect will be confounded, and the dye effect should

be removed from the model. Using a dye swap experiment, we can estimate the dye effect

and normalize the data in a linear fashion. The difference in the dye effects tends to depend

on the gene and the intensity, resulting in a nonlinear effect, and this can be removed by

normalizing the data before hand using the lowess normalization (Yang, Buckley, Dudoit,

and Speed 2002).

In our application we have considered only balanced dye-swap experiments. However,

our model could easily be modified to take account of other designs such as those proposed

by Kerr and Churchill (2001) and Dobbin, Shih, and Simon (2003). For example, our model

could be extended to the loop design introduced by Kerr and Churchill (2001). Note that

a loop design with only two samples (or varieties) is just a dye swap experiment, and so a

more general loop design is a natural extension of the present work.
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